

Highway Safety Improvement Program Data Driven Decisions

Idaho Highway Safety Improvement Program 2013 Annual Report

Prepared by: ID

Disclaimer

Protection of Data from Discovery & Admission into Evidence

23 U.S.C. 148(h)(4) states "Notwithstanding any other provision of law, reports, surveys, schedules, lists, or data compiled or collected for any purpose relating to this section [HSIP], shall not be subject to discovery or admitted into evidence in a Federal or State court proceeding or considered for other purposes in any action for damages arising from any occurrence at a location identified or addressed in the reports, surveys, schedules, lists, or other data."

23 U.S.C. 409 states "Notwithstanding any other provision of law, reports, surveys, schedules, lists, or data compiled or collected for the purpose of identifying, evaluating, or planning the safety enhancement of potential accident sites, hazardous roadway conditions, or railway-highway crossings, pursuant to sections 130, 144, and 148 of this title or for the purpose of developing any highway safety construction improvement project which may be implemented utilizing Federal-aid highway funds shall not be subject to discovery or admitted into evidence in a Federal or State court proceeding or considered for other purposes in any action for damages arising from any occurrence at a location mentioned or addressed in such reports, surveys, schedules, lists, or data."

Table of Contents

Disclaimer	ii
Executive Summary	1
Introduction	2
Program Structure	2
Program Administration	2
Program Methodology	6
Progress in Implementing Projects	
Funds Programmed	
General Listing of Projects	
Progress in Achieving Safety Performance Targets	Error! Bookmark not defined.
Overview of General Safety Trends	Error! Bookmark not defined.
Application of Special Rules	Error! Bookmark not defined.
Assessment of the Effectiveness of the Improvements (Program Evalua	tion)37
SHSP Emphasis Areas	Error! Bookmark not defined.
Groups of similar project types	Error! Bookmark not defined.
Systemic Treatments	Error! Bookmark not defined.
Glossary	

iv

Executive Summary

The Idaho Transportation Department (ITD) continues to work on enhancing the Highway Safety Improvement Program (HSIP) for all public roadways in Idaho. ITD recently developed a planning and prioritization tool that examines and prioritizes safety on a corridor approach. This work recently received an award from FHWA and the Roadway Safety foundation as an innovative practice. This planning and prioritization process also incorporates the methodology outlined in the Highway Safety Manual. In essence this planning process prioritizes corridors by utilizing a data driven approach based on how those sections of roads compared to other similar sections from the standpoint of crash rates and other measures. Once the corridors are prioritized, those that have a higher safety risk will then be evaluated and countermeasures assigned. Once that is done, cost/benefit rations are determined and projects are selected to populate the Statewide Transportation Improvement program. At the local level work continues by the Idaho Local Highway Technical Advisory Council (LHTAC) to plan and prioritize highway safety projects at the local level. LHTAC has developed a process based on the fatal and serious injuries to determine what jurisdiction have priority for HSIP funding.

Finally, ITD continues the use of flex funds for the behavior programs. This is an effective use of the money as Idaho continues to balance the safety program by utilizing the contributes of engineering, education, enforcement and emergency response.

Introduction

The Highway Safety Improvement Program (HSIP) is a core Federal-aid program with the purpose of achieving a significant reduction in fatalities and serious injuries on all public roads. As per 23 U.S.C. 148(h) and 23 CFR 924.15, States are required to report annually on the progress being made to advance HSIP implementation and evaluation efforts. The format of this report is consistent with the HSIP MAP-21 Reporting Guidance dated February 13, 2013 and consists of four sections: program structure, progress in implementing HSIP projects, progress in achieving safety performance targets, and assessment of the effectiveness of the improvements.

Program Structure

Program Administration

How are Highway Safety Improvement Program funds allocated in a State?

Central

District

Other

Describe how local roads are addressed as part of Highway Safety Improvement Program.

A recent resolution was implemented by ITD to insure that local roads as well as road on the state system, receive funding necessary to improve all roadways. Below is Resolution ITB10-36 passed by the Idaho Transportation Board on August 19, 2010. WHEREAS, on August 10, 2005 the Safe, Accountable, Flexible, Efficient Transportation Equity Act – a Legacy for Users (SAFETEA-LU) created the core Highway Safety Improvement Program (HSIP) for utilization by the states; and WHEREAS, Idaho shall develop, implement, and evaluate on an annual basis a HSIP that has the overall objective of significantly reducing the occurrence of and the potential

for fatalities and serious injuries resulting from crashes on all public roads; and WHEREAS, discussions have been held with the Local Highway Technical Assistance Council (LHTAC) regarding the application of the HSIP to the local roads level in order to meet the intent of SAFETEA-LU; and WHEREAS, it is recognized that the majority of the local highway system does not have the exposure (volumetric) data in order to perform an equitable analysis to determine appropriate safety project selection on a statewide basis. NOW THEREFORE BE IT RESOLVED, that the Idaho Transportation Department supports the allocation of a portion of HSIP funding to LHTAC in order to fulfill the intent of SAFETEA-LU; and BE IT FURTHER RESOLVED, that the Department shall accomplish the expansion of the HSIP to the local level by: 1) Working with LHTAC to analyze existing crash data to determine the top crash locations based on frequency and severity recognizing this methodology is acceptable to the Federal Highway Administration. 2) Not limiting HSIP funding only to the state highway system. 3) Establishment of the Safe Highway and Facilities Team to evaluate and balance the HSIP. LHTAC would be Granted a seat on this team and the Districts and LHTAC would be responsible for individual project selection and management of their projects and associated funds within the HSIP. 4) Requiring LHTAC to follow all the HSIP criteria as established by FHWA. This would include the instruction given in the Capital Investment Program update for the latest Statewide Transportation Improvement Program. 5) Supporting and assisting where possible LHTAC in the establishment of a program for the collection of exposure (volumetric) data to support this program and to further meet the requirements of SAFETEA-LU. This includes a local road base map. Once local exposure data can be determined and collected and the local road base map is complete, proportional distribution of funding can be better refined and incorporated into the HSIP. In accordance with the resolution, a formula was created to determine the proportion of the HSIP funding that will be distributed for the state highway system and for the local system. This formula is based on road lane mileage, average daily traffic counts and the percentage of fatalities and serious injuries on each system. The distribution of funding is reflected in the Statewide Transportation Improvement Program approved by the ITD board. Funding will begin with the Federal Fiscal Year 2014.

Identify which internal partners are involved with Highway Safety Improvement Program planning.

Design

Planning

Maintenance

Operations

Governors Highway Safety Office

Other: Other-Office of Highway Safety

Other: Other-Local Highway Technical Assistance Council

Briefly describe coordination with internal partners.

The Districts and Local Highway Technical Assistance Council (LHTAC) select highway safety improvement projects for submission into the Program in each District. The Highway Safety Review Team will review and confirm the final selection of the combined program projects to go into the HSIP portion of the Idaho Transportation Investment Program. This will verify the projects selected meet the MAP-21criteria of the HSIP program and that these projects align with the SHSP and are safety data-driven.

After the Districts and LHTAC have submitted the proposed projects into the program update, the projects will be combined by OTI and given to the HSIP Review Team for review prior to final acceptance.

Identify which external partners are involved with Highway Safety Improvement Program planning.

Metropolitan Planning Organizations

Governors Highway Safety Office

Local Government Association

Other: Other-Local Highway Technical Assistance Council-representing all local highway districts

Identify any program administration practices used to implement the HSIP that have changed since the last reporting period.

Multi-disciplinary HSIP steering committee

Other: Other-The inclusion of the Local Highway Transportation Assistance Council on the committee

Describe any other aspects of Highway Safety Improvement Program Administration on which you would like to elaborate.

Below is an excerpt from Idaho's FY 15 Program Update Document. It shows the emphasis on a data driven approach and alignment with the SHSP.

A "Highway Safety Improvement Project" includes strategies, activities, and projects on a public road that are consistent with a SHSP and

- Correct or improve a hazardous road location or feature; or
- Address a highway safety problem.

Data-driven process:

Highway safety improvement projects must be identified on the basis of crash experience, crash potential, crash rate, or other data-supported means. (23 USC 148(c)(2)(B)). The general framework for the identification and analysis of highway safety problems and counter-measure opportunities is defined in 23 U.S.C. 148(c)(2). This framework is consistent with general roadway safety management practices in that States should:

- Identify safety problems either through a site analysis or systemic approach;
- Identify countermeasures to address those problems;
- Prioritize projects for implementation; and
- Evaluate projects to determine their effectiveness.

The Idaho Transportation Department's use of the Highway Safety Corridor planning and prioritization process should be utilized to identify locations for highway safety projects. **Program Methodology**

Select the programs that are administered under the HSIP.

Median Barrier	Intersection	Safe Corridor
Horizontal Curve	Bicycle Safety	Rural State Highways
Skid Hazard	Crash Data	Red Light Running Prevention
Roadway Departure	Low-Cost Spot Improvements	Sign Replacement And Improvement
Local Safety	Pedestrian Safety	Right Angle Crash
Left Turn Crash	Shoulder Improvement	Segments
⊠Other: Other-Highway Safety Corridor		

Program:	Other-Highway Safety Corridor							
Date of Program Methodology:	1/1/2013							
What data types were used in the program methodology?								
Crashes	Exposure	Roadway						
All crashes	Traffic	Median width						
Fatal crashes only	⊠Volume	Horizontal curvature						
Fatal and serious injury	Population	Functional classification						

crashes only													
Other	Lane miles	Roadside features											
	Other	Other											
What project identification methodology was used for this program?													
Crash frequency													
Expected crash frequency with EB adjustment													
Equivalent property damage or	ly (EPDO Crash frequency)												
EPDO crash frequency with EB	adjustment												
Relative severity index													
Crash rate													
Critical rate													
Level of service of safety (LOSS)													
Excess expected crash frequence	cy using SPFs												
Excess expected crash frequence	cy with the EB adjustment												
Excess expected crash frequence	cy using method of moments												
Probability of specific crash typ	es												
Excess proportions of specific c	rash types												
Other													
Are local roads (non-state owned	and operated) included or address	ed in this program?											

Yes

No

How are highway safety improvement projects advanced for implementation?

Competitive application process

Selection committee

Other

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Relative Weight in Scoring

Rank of Priority Consideration

Ranking based on B/C 1

Available funding

Incremental B/C

Ranking based on net benefit

Cost Effectiveness

What proportion of highway safety improvement program funds address systemic improvements?

35

Highway safety improvment program funds are used to address which of the following systemic improvments?

Cable Median Barriers	
-----------------------	--

Rumble Strips

Traffic Control Device Rehabilitation

Pavement/Shoulder Widening

⊠Install/Improve Signing	⊠Install/Improve Pavement Marking and/or Delineation
Upgrade Guard Rails	Clear Zone Improvements
Safety Edge	Install/Improve Lighting
Add/Upgrade/Modify/Remove Traffic Signal	Other

What process is used to identify potential countermeasures?

Engineering Study

Road Safety Assessment

Other:

Identify any program methodology practices used to implement the HSIP that have changed since the last reporting period.

Highway Safety Manual

Road Safety audits

Systemic Approach

Other: Other-use of the Highway Safety Corridor Analysis procedures developed by DKS and ITD

Describe any other aspects of the Highway Safety Improvement Program methodology on which you would like to elaborate.

As mentioned in the Executive Summary, Idaho has completed a Highway Safety Corridor Analysis process utilizing the Highway Safety Manual. We are working toward enhancing this project further by looking toward automating parts of the process.

Progress in Implementing Projects

Funds Programmed

Reporting period for Highway Safety Improvement Program funding.

Calendar Year

State Fiscal Year

Federal Fiscal Year

Enter the programmed and obligated funding for each applicable funding category.

Funding Category	Programmed*		Obligated				
HSIP (Section 148)	29417000	83 %	29417000	87 %			
HRRRP (SAFETEA-LU)							
HRRR Special Rule							
Penalty Transfer - Section 154							
Penalty Transfer – Section 164	600000	17 %	4586538	13 %			

Incentive Grants - Section 163				
Incentive Grants (Section 406)				
Other Federal-aid Funds (i.e. STP, NHPP)				
State and Local Funds				
Totals	35417000	100%	34003538	100%

How much funding is programmed to local (non-state owned and maintained) safety projects?

0 %

How much funding is obligated to local safety projects?

0 %

How much funding is programmed to non-infrastructure safety projects?

\$1,000,000.00

How much funding is obligated to non-infrastructure safety projects?

\$900,000.00

How much funding was transferred in to the HSIP from other core program areas during the reporting period?

0 %

How much funding was transferred out of the HSIP to other core program areas during the reporting period?

7,956,706 %

Discuss impediments to obligating Highway Safety Improvement Program funds and plans to overcome this in the future.

The cost of safety projects can be an impediment to implementing projects. Lower cost systemic projects are becoming more prominent to counter this problem.

Describe any other aspects of the general Highway Safety Improvement Program implementation progress on which you would like to elaborate.

Additional information on Idaho's HSIP.

Eligibility of Projects: The HSIP emphasizes a safety data-driven, strategic approach to improving highway safety that focuses on eliminating deaths and serious injuries resulting from traffic crashes. To be eligible, projects must be consistent with the strategies in Idaho's Strategic Highway Safety Plan, align with the project criteria outlined in MAP-21, and must be safety data driven. Projects must correct or improve a location, corridor, or address a highway safety problem using a systemic approach. Projects will be included in an annual evaluation which will be prepared by the Office of Highway Safety and will require project start and completion dates.

Projects already in the program will not be removed from the program if they comply with the strategies in the SHSP completed in 2010. However, all new projects must comply with the current SHSP.

<u>Other Projects</u> - Other projects will be consistent with the emphasis areas and strategies in the most current version of Idaho's Strategic Highway Safety Plan. Below are examples but not an exhaustive list. This list is not a prioritized.

a) <u>Behavioral Safety</u> - The Office of Highway Safety will utilize flex funds to conduct projects that affect the safety behavior of the public. In order for a State to be eligible to use the 10 percent flexibility provision in a fiscal year the State must have an approved SHSP.

b) <u>Rumble Strips and Rumble Stripes</u> - This program has been established to install centerline and/or shoulder rumble strips/stripes on the State highway system.

Funding under this program is not intended to be combined with other construction projects where rumble strips/stripes could be installed as part of the other construction projects. Rumble strip/stripe locations must conform to shoulder width requirements, specifically, to allow the required width outside of the rumble strip for bicyclists. Rumble strip projects that require fogging to seal the pavement and associated re- marking the roadway are not an efficient use of funding and may be considered a lower priority.

c) <u>Improved Pavement Markings</u> - This program has been established to provide visible pavement markings at the most difficult time of the year, late in the winter before weather is good enough to refresh the markings; and in accordance with the agreements with FHWA based on the 2003 Joint Review of CONDITION OF PAVEMENT MARKINGS ON THE NATIONAL HIGHWAY SYSTEM IN IDAHO and the follow up review in 2008. Markings installed under this program must be warranted to meet retro-reflective and presence standards for at least two years without additional maintenance. Funding under this program is not intended to be combined with other construction projects that require re-marking the road. Locating durable pavement marking projects requires identifying sections of roadway that have cured sufficiently after new construction, are not scheduled to be reconstructed or seal coated before the warrantee is fulfilled.

d) <u>Sign Upgrades</u> - This program has been established to replace signs than do not meet the increased retro reflectivity requirements of 23 CFR Part 655 through MUTCD Revision 2 and will not be replaced under typical construction projects in the area. Overhead signs are of the highest priority in this program because of equipment and labor requirements for installation. All replaced signs must conform to the current MUTCD as approved by the State, and may include updating the fonts and sign layouts. These changes may increase the sign size and require the support structure to be replaced to handle the increased wind loadings from larger signs.

e) <u>Shoulder Widening or Eliminating Edge Drop-Offs</u> - Must encompass an HQidentified deficiency. This improves the driver's ability to recover should they start to run off the road.

f) <u>Intersection improvements</u> - This includes left and right turn lanes at stopcontrolled intersections, yellow change intervals, medians and pedestrian refuge areas in urban and suburban areas, roundabouts.

g) <u>Hazard elimination</u> - as defined under 23 USC 104(b)(3), 130, 133, 152

h) <u>High accident (or spot) locations</u> For questions regarding the use of the High Accident Location (HAL) report, please contact Kelly Campbell in the Office of Highway Safety at 334-8105.

General Listing of Projects

List each highway safety improvement project obligated during the reporting period.

Project	Improvement Category	Outp	HSIP	Total	Fundin	Functional	AAD	Spee	Roadway	Relationship	to SHSP
		ut	Cost	Cost	g Catego ry	Classificati on	т	d	Ownersh ip	Emphasis Area	Strate gy
D3 Sign Upgrades	Roadway signs and traffic control Sign sheeting - upgrade or replacement	0	11930 00	11930 00	HSIP (Sectio n 148)		0	0	State Highway Agency	Keeping vehicles in the roadway	
184 D3 Pavement Striping	Roadway delineation Longitudinal pavement markings - remarking	0	38000 0	38000 0	HSIP (Sectio n 148)		0	0	State Highway Agency	Keeping vehicles in the roadway	
D3 Signal Equipmen t Upgrade	Intersection traffic control Modify traffic signal - miscellaneous/other/unspe cified	0	10700 0	10700 0	HSIP (Sectio n 148)		0	0	State Highway Agency	Improving the design and operation of highway intersection s	
Dynamic Message sign McCall	Advanced technology and ITS Dynamic message signs	0	11500 0	11500 0	HSIP (Sectio n 148)		0	0	State Highway Agency	Increasing driver safety awareness	

D4 District wide Guardrail Upgrades	Roadside Barrier - other	0	61600 0	61600 0	HSIP (Sectio n 148)	0	0	State Highway Agency	Minimizing the consequenc es of leaving the road	
D4 Sign Upgrades	Roadway signs and traffic control Sign sheeting - upgrade or replacement	0	15400 0	15400 0	HSIP (Sectio n 148)	0	0	State Highway Agency	Keeping vehicles in the roadway	
D4 Pavement Striping	Roadway delineation Longitudinal pavement markings - remarking	0	45800 0	45800 0	HSIP (Sectio n 148)	0	0	State Highway Agency	Keeping vehicles in the roadway	
SH 75 Stanley to Clayton Guardrail Study	Roadside Barrier - other	0	26400 0	26400 0	HSIP (Sectio n 148)	0	0	State Highway Agency	Minimizing the consequenc es of leaving the road	
US 20 Bellin Rd to Yellowsto ne Hwy	Roadway Pavement surface - high friction surface	0	30000 0	30000 0	HSIP (Sectio n 148)	0	0	State Highway Agency	Keeping vehicles in the roadway	

D6 Controlle d Access Fencing	Access management Access management - other	0	81000 0	81000 0	HSIP (Sectio n 148)	0	0	State Highway Agency	Minimizing the consequenc es of leaving the road	
I15 B S. Broadway and Walker	Intersection traffic control Intersection traffic control - other	0	60000	60000	HSIP (Sectio n 148)	0	0	State Highway Agency	Improving the design and operation of highway intersection s	
US 93 400 S Road	Roadway Roadway - other	0	60297 7	65074 0	Penalty Transfe r – Section 164	0	0	State Highway Agency	Keeping vehicles in the roadway	
D1 SIGN UPGRADE S	Roadway signs and traffic control Sign sheeting - upgrade or replacement	0	12077 66	13034 37	Penalty Transfe r – Section 164	0	0	State Highway Agency	Keeping vehicles in the roadway	
D3 SIGN UPGRADE S	Roadway signs and traffic control Sign sheeting - upgrade or replacement	0	54847 7	59189 1	Penalty Transfe r – Section	0	0	State Highway Agency	Keeping vehicles in the	

					164				roadway	
D3 Pavement Striping	Roadway delineation Longitudinal pavement markings - remarking	0	10994	10994	Penalty Transfe r – Section 164	0	0	State Highway Agency	Keeping vehicles in the roadway	
SH 75 Stanley to Clayton Guardrail Study	Roadside Barrier - other	0	41745 9	45052 8	Penalty Transfe r – Section 164	0	0	State Highway Agency	Minimizing the consequenc es of leaving the road	
Commerci al WGT/Safe ty Complianc e Station PH 2	Miscellaneous	0	31356 1	33840 0	Penalty Transfe r – Section 164	0	0	State Highway Agency	Making truck travel safer	
Behavoria I Safety	Non-infrastructure		10000 00	10000 00	HSIP (Sectio n 148)			all ownershi ps	Increasing driver safety awareness	
Cotterell Rest Area	Roadway		98533 4	10633 86	Penalty Transfe r –			State Highway	Keeping drivers	

Ramps			Section 164		Agency	alert	

Progress in Achieving Safety Performance Targets

Overview of General Safety Trends

Present data showing the general highway safety trends in the state for the past five years.

Performance Measures*	2008	2009	2010	2011	2012
Number of fatalities	257	250	237	217	204
Number of serious injuries	1695	1642	1559	1479	1376
Fatality rate (per HMVMT)	1.69	1.63	1.53	1.4	1.31
Serious injury rate (per HMVMT)	11.16	10.72	10.09	9.55	8.88

*Performance measure data is presented using a five-year rolling average.

To the maximum extent possible, present performance measure* data by functional classification and ownership.

Year - 2012

Function Classification	Number of fatalities	Number of serious injuries	Fatality rate (per HMVMT)	Serious injury rate (per HMVMT)
RURAL PRINCIPAL ARTERIAL - INTERSTATE	24	110	1.1	5.06
RURAL PRINCIPAL ARTERIAL - OTHER FREEWAYS AND EXPRESSWAYS	0	0	0	0
RURAL PRINCIPAL ARTERIAL - OTHER	46	203	2.15	9.45
RURAL MINOR ARTERIAL	21	106	2.3	11.66
RURAL MINOR COLLECTOR	8	34	3.38	13.91
RURAL MAJOR COLLECTOR	35	141	2.78	11.07
RURAL LOCAL ROAD OR STREET	26	120	1.17	5.33
URBAN PRINCIPAL	9	57	0.68	4.47

ARTERIAL - INTERSTATE				
URBAN PRINCIPAL ARTERIAL - OTHER FREEWAYS AND EXPRESSWAYS	0	0	0	0
URBAN PRINCIPAL ARTERIAL - OTHER	18	310	0.82	14.02
URBAN MINOR ARTERIAL	9	169	0.58	11.44
URBAN MINOR COLLECTOR	0	0	0	0
URBAN MAJOR COLLECTOR	4	54	0.6	8.46
URBAN LOCAL ROAD OR STREET	4	74	0.43	8.48
OTHER	0	0	0	0
OTHER	0	0	0	0

Fatalities by Roadway Functional Classification

Serious Injuries by Roadway Functional Classification

Fatality Rate by Roadway Functional Classification

Serious Injury Rate by Roadway Functional Classification

Year - 2012

Roadway Ownership	Number of fatalities	Number of serious injuries	Fatality rate (per HMVMT)	Serious injury rate (per HMVMT)
STATE HIGHWAY AGENCY	122	695	1.47	8.37
COUNTY HIGHWAY AGENCY	0	0	0	0
TOWN OR TOWNSHIP HIGHWAY AGENCY	0	0	0	0
CITY OF MUNICIPAL HIGHWAY AGENCY	0	0	0	0
STATE PARK, FOREST, OR RESERVATION AGENCY	0	0	0	0
LOCAL PARK, FOREST OR RESERVATION AGENCY	0	0	0	0
OTHER STATE AGENCY	0	0	0	0
OTHER LOCAL AGENCY	82	683	1.13	9.49
PRIVATE (OTHER THAN RAILROAD)	0	0	0	0

RAILROAD	0	0	0	0
STATE TOLL	0	0	0	0
AUTHORITY				
LOCAL TOLL	0	0	0	0
AUTHORITY				
OTHER PUBLIC	0	0	0	0
INSTRUMENTALITY				
(E.G. AIRPORT,				
SCHOOL, UNIVERSITY)				
INDIAN TRIBE NATION	0	0	0	0
OTHER	0	0	0	0
OTHER	0	0	0	0

Number of Fatalities by Roadway Ownership

Number of Serious Injuries by Roadway Ownership

Fatality Rate by Roadway Ownership

Roadway Functional Classification

Serious Injury Rate by Roadway Ownership

Roadway Functional Classification

Describe any other aspects of the general highway safety trends on which you would like to elaborate.

Idaho's five year rolling average for fatalities and serious injuries continues to decrease. We feel that better uses of HSIP money for infrastructure and behavior projects that are data driven is probably contributing to this decrease.

Application of Special Rules

Present the rate of traffic fatalities and serious injuries per capita for drivers and pedestrians over the age of 65.

Older Driver	2008	2009	2010	2011	2012
Performance Measures					
Fatality rate (per capita)	26.91	23.32	24.05	22.51	21.09
Serious injury rate (per capita)	137.35	130.45	125.77	117.25	109.23
Fatality and serious injury rate (per capita)	164.25	156.77	149.83	139.76	130.32

*Performance measure data is presented using a five-year rolling average.

The fatality rate is the number of drivers, pedestrians and bicyclists 65 or older divided by the number of people 65 or older in Idaho times 100000. Each year is a five year rolling average rate using that year plus the four previous years rate. The same methodology is used for serious injury and fatal and serious injury.

Rate of Fatalities and Serious injuries for the Last Five Years

Does the older driver special rule apply to your state?

No

Assessment of the Effectiveness of the Improvements (Program Evaluation)

What indicators of success can you use to demonstrate effectiveness and success in the Highway Safety Improvement Program?

None

Benefit/cost

Policy change

Other:

What significant programmatic changes have occurred since the last reporting period?

Shift Focus to Fatalities and Serious Injuries

Include Local Roads in Highway Safety Improvement Program

Organizational Changes

None

Other: Other-even more use of data driven approaches

Briefly describe significant program changes that have occurred since the last reporting period.

Change in policy for the use of the Highway Safety Corridor Analysis (HSCA) was implemented. The HSCA is a procedure that uses a data driven approach to the selection of projects implemented using HSIP money. The process was developed over the past 18 months and is now completed. The process should be in use for the next fiscal year.

SHSP Emphasis Areas

For each SHSP emphasis area that relates to the HSIP, present trends in emphasis area performance measures.

Year - 2012

HSIP-related SHSP Emphasis Areas	Target Crash Type	Number of fatalities	Number of serious injuries	Fatality rate (per HMVMT)	Serious injury rate (per HMVMT)	Other- 1	Other- 2	Other- 3
Instituting graduated licensing for younger drivers		32.2	269.6	0.21	1.74	0	0	0
Sustaining proficiency in older drivers		33.8	143.4	0.216	1.168	0	0	0
Curbing aggressive driving		84.8	645	0.55	4.162	0	0	0
Reducing impaired driving		82	270	0.528	1.742	0	0	0
Keeping drivers alert		0	0	0	0	0	0	0
Increasing seat belt use and improving airbag effectiveness		82.4	301.4	0.532	1.946	0	0	0
Making walking and street crossing easier		11.2	52.2	0.07	0.334	0	0	0
Ensuring safer bicycle travel		3	50	0.02	0.324	0	0	0

Improving motorcycle safety and increasing motorcycle awareness	26.4	161.6	0.172	1.134	0	0	0
Making truck travel safer	22.6	86.8	0.148	0.558	0	0	0
Keeping vehicles in the roadway	103.2	453.8	0.666	2.93	0	0	0
Improving the design and operation of highway intersections	36.8	501.6	0.238	3.24	0	0	0
Reducing head-on and across-median crashes	39.4	201	0.256	1.298	0	0	0

Groups of similar project types

Present the overall effectiveness of groups of similar types of projects.

Year - 2012

HSIP Sub-program Types	Target Crash Type	Number of fatalities	Number of serious injuries	Fatality rate (per HMVMT)	Serious injury rate (per HMVMT)	Other- 1	Other- 2	Other- 3
The program was just implemented and there is no data available yet.		0	0	0	0	0	0	0

Systemic Treatments

Present the overall effectiveness of systemic treatments..

Year - 2012

Systemic improvement	Target Crash Type	Number of fatalities	Number of serious injuries	Fatality rate (per HMVMT)	Serious injury rate (per HMVMT)	Other- 1	Other- 2	Other- 3
Install/Improve Pavement		203.6	1375.6	1.324	9.034	0	0	0
Marking and/or Delineation								
Add/Upgrade/Modify/Remove		36.8	501.6	0.238	3.24	0	0	0
Traffic Signal								
Install/Improve Signing		203.6	1375.6	1.324	9.034	0	0	0
Upgrade Guard Rails		203.6	1375.6	1.324	9.034	0	0	0

Describe any other aspects of the overall Highway Safety Improvement Program effectiveness on which you would like to elaborate.

Location	Functional Class	Improvement Category	Improvement Type	Bef- Fatal	Bef- Serious Injury	Bef- Other Injury	Bef- PDO	Bef- Total	Aft- Fatal	Aft- Serious Injury	Aft- Other Injury	Aft- PDO	Aft- Total	Evaluation Results (Benefit/ Cost Ratio)
Statewide				670	3899	23271	48360	76200	506	3168	19998	41416	65088	

Provide project evaluation data for completed projects (optional).

Optional Attachments

Sections

Files Attached

Glossary

5 year rolling average means the average of five individual, consecutive annual points of data (e.g. annual fatality rate).

Emphasis area means a highway safety priority in a State's SHSP, identified through a data-driven, collaborative process.

Highway safety improvement project means strategies, activities and projects on a public road that are consistent with a State strategic highway safety plan and corrects or improves a hazardous road location or feature or addresses a highway safety problem.

HMVMT means hundred million vehicle miles traveled.

Non-infrastructure projects are projects that do not result in construction. Examples of noninfrastructure projects include road safety audits, transportation safety planning activities, improvements in the collection and analysis of data, education and outreach, and enforcement activities.

Older driver special rule applies if traffic fatalities and serious injuries per capita for drivers and pedestrians over the age of 65 in a State increases during the most recent 2-year period for which data are available, as defined in the Older Driver and Pedestrian Special Rule Interim Guidance dated February 13, 2013.

Performance measure means indicators that enable decision-makers and other stakeholders to monitor changes in system condition and performance against established visions, goals, and objectives.

Programmed funds mean those funds that have been programmed in the Statewide Transportation Improvement Program (STIP) to be expended on highway safety improvement projects.

Roadway Functional Classification means the process by which streets and highways are grouped into classes, or systems, according to the character of service they are intended to provide.

Strategic Highway Safety Plan (SHSP) means a comprehensive, multi-disciplinary plan, based on safety data developed by a State Department of Transportation in accordance with 23 U.S.C. 148.

Systemic safety improvement means an improvement that is widely implemented based on high risk roadway features that are correlated with specific severe crash types.

Transfer means, in accordance with provisions of 23 U.S.C. 126, a State may transfer from an apportionment under section 104(b) not to exceed 50 percent of the amount apportioned for the fiscal year to any other apportionment of the State under that section.